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We consider the electronic properties of ferromagnetic bulk Ga;_Mn,As at zero temperature using two
realistic tight-binding models, one due to Tang and Flatté and one due to MaSek. In particular, we study the
density of states, the Fermi energy, the inverse participation ratio, and the optical conductivity with varying
impurity concentration x=0.01-0.15. The results are very sensitive to the assumptions made for the on-site and
hopping matrix elements of the Mn impurities. For low concentrations, x<0.02, Masek’s model shows only
small deviations from the case of p-doped GaAs with increased number of holes while within Tang and Flatté’s
model an impurity-band forms. For higher concentrations x, MaSek’s model shows minor quantitative changes
in the properties we studied while the results of the Tang and Flatté model exhibit qualitative changes including
strong localization of eigenstates with energies close to the band edge. These differences between the two
approaches are in particular visible in the optical conductivity, where Masek’s model shows a Drude peak at
zero frequency while no such peak is observed in Tang and Flatté’s model. Interestingly, although the two
models differ qualitatively the calculated effective optical masses of both models are similar within the range

of 0.4—1.0 of the free-electron mass.
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I. INTRODUCTION

Dilute magnetic semiconductors are investigated very ac-
tively for their potential of combining ferromagnetic with
semiconducting properties. A prominent prototype is
Ga;_,Mn,As with Mn concentrations being typically x
=0.01-0.15.""* For these intermediate to large concentra-
tions critical temperatures up to 170 K could be observed.’
The host material, GaAs, is a III-V semiconductor with a
band gap of 1.5 eV. When the Mn impurities substitute the
Ga atoms, they act as acceptors which carry a local magnetic
moment caused by the half-filled d-shell. This leads to a
hole-mediated ferromagnetism.® The impurity binding en-
ergy is 0.11 eV.” If the Mn concentration exceeds a critical
value x=0.01, the impurity wave functions at the Fermi en-
ergy overlap sufficiently for the material to undergo a tran-
sition toward a metallic state.

A widely discussed question is whether the holes reside in
an impurity band which is detached from the host valence
band or in the valence band itself, which would cause differ-
ent transport properties.* To this end a variety of absorption
experiments®~!! and measurements of the band gap and
chemical potential'>!3 in GaMnAs were performed. For very
low concentrations x <<0.01, an impurity band is formed with
the Fermi energy residing therein.'* This picture has also
been used for the intermediate concentration range, x
~0.01-0.15, to explain optical measurements.® On the other
hand, there is experimental indication that the impurity band
and the valence band have completely merged, see Ref. 14
and references therein. Another issue concerns the localiza-
tion properties of the carriers. It has been argued that instead
of the impurity-band interpretation the assumption of a
merged valence and impurity band together with the exis-
tence of localized states in the band tail can explain the
experiments.'4

Besides the experimental efforts for a better understand-
ing of the electronic properties of Ga;_,Mn,As, a wide range
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of theoretical models has been developed.> Among these are
first-principles calculations,'>!¢  effective ~single-particle
tight-binding approaches,'’2° tight-binding approaches in
combination with percolation theory,>'?* dynamical mean-
field theories,>* effective theories based on k-p
Hamiltonians,?>2® and large-scale Monte Carlo studies of a
real space Hamiltonian.?’ The microscopic tight-binding ap-
proach has the advantage that one can study disordered sys-
tems in a nonperturbative way. The basis for this approach is
the 16sp? valence and conduction bands of GaAs that are
approximated very closely to experimental data throughout
the entire Brillouin zone. System sizes up to approximately
2000 atoms can be treated within this approach with reason-
able numerical effort.

In this paper we present our results concerning the elec-
tronic structure of bulk Ga;_,Mn,As at zero temperature. We
assume the system to be ferromagnetic by aligning all Mn
core spins into the z direction. Specifically, we focus on the
role of substitutional Mn impurities by neglecting interstitial
disorder. The basis for our studies are well-known sp® tight-
binding models for the host material GaAs which include
spin-orbit coupling.’®3! The disorder effects are treated in a
nonperturbative way by changing the on-site and hopping
terms of those Ga sites that are replaced by the Mn impuri-
ties. Instead of describing the effects of the Mn impurities by
the two sp-d exchange constants Nya and N3 only,'®1° we
follow two more elaborate approaches. The first approach, by
Magek?>3? (referred to as model A), uses first-principles
methods to determine the tight-binding parameters of the Mn
impurities in a concentration regime around 10%. The sec-
ond approach, by Tang and Flatté'”3* (model B), is based on
a fit of the physically relevant tight-binding parameters to
reproduce the binding energy of a single Mn impurity in the
host material. Both approaches result in effective single-
particle tight-binding models in which the carrier-carrier cor-
relations are included in a mean-field way. This approxima-
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tion is justified in the intermediate to high doping regime,
i.e.,, x=0.01."% Nevertheless, explicit inclusion of carrier-
carrier interactions could lead to quantitative corrections
which enhance localization effects.’*

In Sec. II we summarize the two approaches of how to
find the reliable parameter sets for the inclusion of the Mn
impurities and introduce our numerical method for solving
the resulting equations in more detail. The explicit calcula-
tion of the eigenenergies and eigenstates allows us to inves-
tigate the density of states and the position of the Fermi
energy. In Sec. III we show that for Masek’s model (A) the
valence band is only slightly deformed while for the model
by Tang and Flatté (B) an impurity-band forms which starts
to merge with the host valence band at x=0.01. The spatial
extension of the states around the Fermi energy is investi-
gated in Sec. VI by means of the inverse participation ratio.
We show that the states related to the impurity band show
strong localization when their energy is close to the band
edge. Based on the spectrum and the eigenfunctions, we cal-
culate the experimentally relevant optical conductivity. The
relation of these results to the experimental findings is dis-
cussed in Sec. V.

II. TIGHT-BINDING APPROACH

Our analysis within the framework of a phenomenological
tight-binding approach®3® is based on an effective single
particle Hamiltonian allowing for material-specific simula-
tions of bulk GaMnAs systems. We considered disordered
supercells of up to 2000 atoms with the supercell size being
limited by the available computer resources only. In this
work we focus on substitutional disorder by changing the
on-site and hopping terms of certain Ga sites which are re-
placed by Mn.

In order to introduce the terminology we briefly summa-
rize the tight-binding approach. Using the single-particle ba-
sis,

1 . R
Xl;oa(;) = ?2 CXP[lk(R + ta)]d’o(r —la= R) > (1)
VS F

the eigenstates of the Hamiltonian can be written as

VD= ¢ XtoalD. 2)

o,a

Here, o labels the atomic orbital ¢,, a specifies the atom
sitting at the position 7, within the supercell, S is the total

number of supercells and R points to the several supercells
that are included. The sum over o and a in Eq. (2) thus runs
over all orbitals of all N atoms in a supercell. Due to the
periodicity and the Bloch character of the basis states Xj qs
the Hamiltonian is block diagonal with respect to the differ-
ent k vectors. The matrix elements in this basis thus read

[H(Ig)]oa,o'a’ = 2 exp(ik)’—:nn)<¢ua(;)|H|¢o’a’(’7_ an»s

AR

3)

where the sum goes over all the supercells that contain the
nearest or next to nearest neighbors, depending on the ap-
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proximation employed. The vector 7, points from atom a to

atom a’ so that 7,,=AR,,+1,—1,. On-site terms are thus
characterized by r,,=0 while hopping terms correspond to
Fn # 0. Numerical diagonalization of the matrix [Eq. (3)]
returns the eigenenergies and the eigenvectors as a linear
combination of the localized atomic orbitals ¢, (7).

We have studied two different parameter sets for the in-
clusion of Mn impurities into existing tight-binding models
for GaAs. The first set due to MaSek (model A) is derived
from a first-principles approach while the second one due to
Tang and Flatté (model B) is based on phenomenologically
deduced parameters. In either case we checked our simula-
tion by first calculating the band structure and density of
states for clean GaAs using the tetrahedron method.?” Then
we considered disordered supercells which are repeated pe-
riodically, and their ensembles. The sizes of the supercells
are typically between 128 and 1024 atomic sites while the
disorder averages were performed over 5-15 random con-
figurations, depending on the system size and the number of
impurities. The finiteness of the systems limits the impurity
concentrations to x=0.006. As we will demonstrate below,
the density of states is self-averaging for supercells of the
above-mentioned sizes so that increasing the number of dis-
order averages decreases the fluctuations of the results but
does not give any new qualitative features. The self-
averaging property also allows to imply periodic boundary
conditions to the supercells by which less fluctuating results
can be obtained. These periodic repetitions of the supercells
correspond to a summation over various k points in the Bril-
louin zone. In our calculations we used between 20 and 505
different points in k space which are chosen in close resem-
blance to the ones given by the tetrahedron method. How-
ever, in contrast to the clean system, a linear interpolation of
the band structure does not give an improvement of the qual-
ity of the results as the eigenenergies of a disordered super-
cell for a given & lie too close to each other.

1. Model A (Masek)

The first model we study was introduced by Masek.?" It
starts from a tight-binding approach for the host material
which includes the first and second-nearest-neighbor
interactions®' as well as spin-orbit coupling.®® This gives a
rather accurate description of the band structure including
the conduction bands away from the I" point. The on-site and
hopping terms for the Mn impurity in the disordered system
were obtained from a first-principles calculation using a self-
consistent Hartree-Fock approximation for a single Mn im-
purity hybridized in a GaAs lattice.?’3? The energy shift of
the s states is assumed to be proportional to the difference of
calculated atomic levels while the on-site energies of the
p states remain unchanged. This procedure gives for the
on-site energies Eyy, =04 eV, Ey,,=0.0 eV, and
Enpp=4.374 eV. Additionally, the ten d orbitals of
Mn are explicitly included. These orbitals can be divided
into two subgroups according to their symmetry, i.e.,
(Mn,r2) and (Mn,e). The corresponding values
are  Ey,07=—-2.21981 eV, Ey,0=2.63427 eV, Eyy,

=-3.01348 eV, and Eyp,, =2.36445 eV. Finally, it was
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assumed that the Mn d states hybridize only with the s and p
orbitals of the nearest neighbors. The relevant hopping
parameters based on the Harrison rules®>*® are V.,
=-1.1077 eV, V,;,=-1.0341 eV, and V,,; .=0.4767 eV.
These resulting parameters were then checked within the
same theoretical framework for a system with 10% of the Ga
atoms replaced by Mn and appeared to be robust. The model
is supported by photoemission spectroscopy experiments*?
that revealed only minor differences in the band structure of
Ga;_,Mn, As compared to GaAs except for the appearance of
the additional Mn d states.

2. Model B (Tang, Flatté)

The second model we studied was introduced by Tang and
Flatté.!73* The electronic structure of the GaAs host material
is described by a slightly different sp® tight-binding model
which also includes spin-orbit coupling but remains within
the nearest-neighbor approximation.* Despite the lack of the
second-nearest-neighbor terms this model gives a fairly ac-
curate description of the band structure of GaAs around the
I' point. The replacement of a Ga atom by a Mn impurity is
modeled by an effective potential which describes the
changes in on-site energies and hybridization of the Mn
d-orbitals with the As p-orbitals. The Mn d-orbitals are not
part of the basis set of atomic orbitals as they are included
indirectly by a spin-dependent effective energy shift of the
nearest-neighbor p orbitals. There are two independent pa-
rameters of the effective impurity potential. They are given
by compensating the difference in the atomic ionization en-
ergies and by fitting the experimentally’ obtained Mn accep-
tor level lying at 0.11 eV. This fitting procedure is based on
the Koster-Slater technique to calculate the host Green’s
function and the subsequent inclusion of the impurity poten-
tial via Dyson’s equation for studying the local density of
states. From the resulting parameters the corresponding p-d
exchange interaction can be estimated to be =—0.3 eV while
the experimental value was found to be =~-1.2 eV.!73% The
model was applied to describe single Mn atoms and Mn pairs
in GaAs and showed good agreement with experimental re-
sults for the local and total density of states as well as the
shape of the wave functions.** This apparently good descrip-
tion of Mn pairs is the main motivation to apply the model to
diluted disordered bulk systems and study its applicability in
the regime of highly doped magnetic semiconductors.

III. DENSITY OF STATES

The density of states, d(E,x,N), is obtained by direct di-
agonalization of the tight-binding Hamiltonian (3) and the
evaluation of the sum

d(E.x.N) = fm)E SLE-ED), (4)
bk

where S/(E) is a broadened delta function of the chosen
width e=5 meV. The eigenvalues E;;b) of the Hamiltonian
are labeled by the band index b. The density of states is
normalized by the total number of states n(«). As the param-
eter sets for clean GaAs are different for the two models, the
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FIG. 1. (Color online) Model A: Density of states for clean
GaAs (black dotted, tetrahedron method) and disordered GaMnAs.
The Mn concentration is x=0.05. System sizes are N=128 sites
(505 k vectors, 15 disorder configurations) and N=1024 sites (20 k
vectors, 5 disorder configurations). The arrow indicates the position
of the Fermi energy, Er=—0.34 eV. The upper (lower) part of the
figure shows the spin-up (down) contribution to the density of
states.

resulting densities of states also show different behavior, in
particular for the conduction band, see Figs. 1 and 2.

The results for a Mn concentration x=0.05 and two dif-
ferent system sizes are shown in Figs. 1 and 2 for the models
A (Masek) and B (Tang, Flatté), respectively. In both cases
one can clearly observe the self-averaging properties of the
density of states—the deviations between the two systems of
different sizes are on the same order as the fluctuations due
to the disorder. This self-averaging property of the density of
states can be observed for the entire range of concentrations
studied. This implies that the quantity d(E,x,N)=d(E,x) is
independent of the system size N if the smaller fluctuations
are neglected.

For model A (Maek) one finds that the density of states is
only slightly perturbed in comparison to the density of states
for the clean system. This is in contrast to the results of
model B (Tang, Flatté) where, especially around the top of
the valence band of the host material, the number of spin-up
states is significantly enhanced. In either model the spin-
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FIG. 2. (Color online) Model B: Density of states for clean
GaAs (black dotted, tetrahedron method) and disordered GaMnAs.
The Mn concentration is set to x=0.05. System sizes are N=128
sites (505 & vectors, 15 disorder configurations) and N=1024 sites
(20 k vectors, 5 disorder configurations). The arrow indicates the
position of the Fermi energy, Ex=0.30 eV. The upper (lower) part
of the figure shows the spin-up (down) contribution to the density
of states.
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FIG. 3. (Color online) Model A: Density of states of GaMnAs.
The Mn concentration is set to x=0.009 (1024 atoms, 20k vectors, 5
disorder configurations), x=0.051 (432 atoms, 89k vectors, 10 dis-
order configurations), and x=0.148 (432 atoms, 89k vectors, 10
disorder configurations). The arrows indicate the positions of the
corresponding Fermi energies: Eg(x=0.009)=-0.17 eV, Eg(x
=0.051)=-0.34 eV, Eg(x=0.148)=-0.49 eV. For comparison the
densities of states for clean GaAs and MnAs are shown.

down contribution of the valence band remains unaltered.

As energies around the Fermi energy are most interesting
we present the density of states for a smaller energy window
and various Mn concentrations in the Figs. 3 and 4. For
model A (Masek), increasing the Mn concentration from 1%
to 15% does not change the qualitative but only quantitative
characteristics of the density of states. In particular, no de-
tached impurity band forms within this model and the given
range of Mn concentrations. The size of the band gap de-
creases as some of the spin-up states are shifted from below
the top of the valence band into the gap of the host material.
However, as adding Mn impurities also adds holes, the Fermi
energy decreases and moves deeper into the valence band,
see also Fig. 5. Thus, the major effect of an increasing num-
ber of Mn impurities is the larger number of holes which
leads to a lowering of the Fermi energy. This trend qualita-
tively follows the Fermi energy of pure GaAs with the cor-
responding number of holes added, see Fig. 6.

For model B (Tang, Flatté) a completely different picture
arises. Due to the strong effective potential of the Mn impu-
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FIG. 4. (Color online) Model B: Density of states of GaMnAs.
The Mn concentration is set to x=0.009 (686 atoms), x=0.051 (432
atoms), and x=0.148 (432 atoms). In either case 89 k vectors and 10
disorder configurations were used. The arrows indicate the positions
of the corresponding Fermi energies: Ep(0.009)=0.10 eV,
Er(0.051)=0.30 eV, Ex(0.148)=0.65 eV. For comparison the den-
sities of states for clean GaAs and MnAs are shown.
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FIG. 5. (Color online) Models A and B: Fermi energy of GaM-
nAs as a function of the impurity concentration measured from the
top of the GaAs host valence band. The Fermi energy of model A
moves into the host valence band while it increases into the host
gap for model B. System sizes between 128 and 1024 atoms are
shown. The dotted lines serve as a guide to the eye.

rities there is a large number of states shifted from the host
valence band far into the gap. Already at concentrations of
5% there is almost no gap left at all. The second effect of the
addition of Mn impurities is again the increased number of
holes which lowers the Fermi energy. However, for model B
(Tang, Flatté) this increasing number of holes does not com-
pensate the effect of the large number of states appearing in
the host gap. Hence one observes an increasing Fermi en-
ergy, measured relative to the top of the host valence band,
see Fig. 5. The second major difference to model A (Masek)
is the appearance of a detached impurity band for small
enough impurity concentrations. This impurity band starts to
merge with the valence band for concentrations around 1%,
see Fig. 4, which is consistent with experimental data.*’ Its
center is positioned at the impurity binding energy of Mn
while its half width is on the order of 0.1 eV. For x=0.05
one cannot distinguish the impurity band from the valence
band anymore as the two bands have merged completely.
The results for the Fermi energy and the band gap are
summarized in Figs. 5 and 6. In Fig. 5 the Fermi energy of
GaMnAs measured with respect to the top of the GaAs host
valence band is shown. From the behavior of the Fermi en-
ergy as a function of the impurity concentration, it is evident

> %1 BN
2 = o
= 1% bl Y - S -
< s} ........
o - x Ep (model A)
= & A, (model A)
(0 % E. (modelB)
*\5&\ v Agap (model B)
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FIG. 6. (Color online) Models A and B: Fermi energy Ep mea-
sured relative to the top of the GaMnAs valence band and gap size
Ag,p- The dotted lines serve as a guide to the eye. The dashed line
shows the Fermi energy of p-GaAs without impurities where the
number of holes is adjusted to the corresponding GaMnAs impurity
concentration x.
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that the two effects of adding holes and shifting states are of
unequal importance for the two models, as described in the
previous paragraphs. In Fig. 6 we present the Fermi energy
measured with respect to the GaMnAs valence band. By
choosing these concentration dependent reference points for
the energy, we partially suppress the effects due to the shifted
states. Hence, the Fermi energy decreases with respect to this
energy reference point for both models. Again one finds that
the addition of the holes is the major effect for model A
(Masek) as the resulting Fermi energy behaves very similar
to the case of clean p-GaAs with the corresponding number
of holes added, see Fig. 6. Furthermore we have included the
results for the band gap A,,, into Fig. 6. This information can
be used in the design and study of spintronic devices includ-
ing hole injection into GaMnAs. The stronger influence of
the disorder in model B (Tang, Flatté) compared to model A
(Masek) becomes evident as the size of the gap is much
faster decreasing for model B. Experiments based on scan-
ning tunneling microscopy conductance spectra resulted in
an estimate A,,,~1.23 eV for x~=0.03 (Ref. 12) and, more
recently, photoconductivity measurements on GaMnAs het-
erostructures yielded A,,,~1.41 eV for the same Mn
concentration.'> The chemical potential was found to be in
the vincinity of the Mn impuritiy level.'> However, the con-
sidered samples were unannealed or annealed only for short
times implying a significantly reduced carrier concentration
due to Mn intersticials. Therefore, a direct comparison with
our data is not possible and further, more detailed, experi-
mental investigations are necessary in order to decide which
model provides a more accurate description.

The differences for the density of states between the two
models can be better understood when the density for a clean
MnAs (x=1) system is calculated. As zinc-blend MnAs does
not form a stable configuration*! this calculation does not
correspond to a real physical system. Nevertheless it de-
scribes the x— 1 limit of the two models giving a good in-
dication of what to expect for increasing x. The parameter-
ization of model A (Masek) results in an increased number of
states for MnAs in the gap of GaAs. For the disordered
GaMnAs there is a clear tendency for the density of states to
change from the GaAs shape (x=0) toward the MnAs shape
(x=1). This can, for example, be seen by the formation of the
shoulder in the density of states at E~—1 eV and x=0.148,
see Fig. 3. For model B (Tang, Flatté), the MnAs density
shows a qualitatively new feature at E~0.5 eV in the gap of
the GaAs, seen in Fig. 4. The appearing peak is due to the
shift in the energies of the p states which is reflected in the
rapidly vanishing gap for the disordered GaMnAs.

IV. INVERSE PARTICIPATION RATIO

Besides the density of states and the Fermi energy we also
studied the character of the eigenstates, in particular, their
localization properties. To this end we analyzed the inverse
participation ratio averaged over all states in a given energy
window:
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FIG. 7. (Color online) Model A: Scaled inverse participation
ratio [N-I(E,x,N)] for fixed concentration x=0.05 and various sys-
tem sizes N=128 (505K vectors, 15 configurations), N=432 (89k
vectors, 10 configurations), and N=1024 (201? vectors, 5 configura-
tions). The arrow indicates the position of the Fermi energy
Ep=-0.34 eV.
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Qualitatively, the participation ratio corresponds to the aver-
age number N, of sites occupied by the eigenstates of given
energy E, i.e., 1/I~Ngy,. Thus, I(E,x,N) scales with the
inverse system size for extended states as the probability
>, |cioal* to find the electron at a certain atom is on the order
of the inverse system size. For strongly localized states
I(E,x,N) remains constant independently of the system size.

First, we consider the scaling of [N-I(E,x,N)] with sys-
tem size N for a fixed impurity concentration. The results for
the two models are shown in Figs. 7 and 8 where [N-I(E,x
=0.05,N)] is plotted. As expected, one finds extended states
for the energies deep within the valence band. As the energy
is increased toward the Fermi energy, the value of
[N-I(E,x,N)] increases, meaning that on average, less atoms
participate in the corresponding states. Comparing Figs. 7
and 8 one finds this effect to be much stronger for model B
(Tang, Flatté). Nevertheless a clear linear scaling of

150
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& — N=1024 f\l’
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/— \ II !
r
s
o ==
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FIG. 8. (Color online) Model B: Scaled inverse participation
ratio [N-I(E,x,N)] for fixed concentration x=0.05 and various sys-
tem sizes N=128 (505k vectors, 15 configurations), N=432 (89k
vectors, 10 configurations), and N=1024 (ZOE vectors, 5 configura-
tions). The arrow indicates the position of the Fermi energy Ep
=0.30 eV.
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FIG. 9. (Color online) Models A and B: Scaled inverse partici-
pation ratio [N-I(Eg,x,N)] at the Fermi energy as a function of the
system size N. Mn concentrations x=0.05, 0.10, and 0.15 are shown
for models A and B.

[N-I(Eg,x,N)] with system size N, which would indicate
strongly localized states at the Fermi energy, cannot be
found, see Fig. 9. This implies that the states around the
Fermi energy reside on a subset of lattice atoms; yet they are
still extended throughout the sample. This holds true for con-
centrations between 5% and 15%, see Fig. 9. For model B
(Tang, Flatté), this effect is more pronounced and we will
argue that the states are spread over the sublattice of Mn
sites. As the density of states decreases for energies closer to
the band edge there are less states giving a contribution to
the inverse participation ratio [Eq. (5)]. This causes the
stronger fluctuations in I(E,x,N) that can be observed for
energies around and above the Fermi energy.

Going from the Fermi energy Ef to higher energies close
to the band edge, E,., the states remain delocalized for model
A (Masek) while they show strong localization for model B
(Tang, Flatté). Qualitatively this conclusion is supported by
the following argument. If an impurity state is strongly lo-
calized it cannot overlap with other impurity states located at
neighboring impurity sites. This implies that the number of
sites occupied by an impurity state must be significantly
smaller than N/Ny,. As the participation ratio is a measure
for the number of occupied sites N, it follows that the states
are strongly localized only if I(E,x,N) is large enough so
that x<I(E,x,N) independent of the system size N. This is
consistent with the statement that I(E,x,N) scales inversely
with the system size N for extended states while it remains
constant for localized states. For model A (Masek) the con-
dition x<I(E,x,N) is never fullfilled in the entire energy
range, see Fig. 7. However, for model B (Tang, Flatté), going
beyond the Fermi energy this criterion can be fulfilled im-
plying that there are localized states, see Fig. 8.

To demonstrate this localization property for model B
(Tang, Flatté) in more detail we show the maximum values
of [N-I(E,x,N)], which correspond to energies E,. close to
the band edge, in Fig. 10. The clear linear increase of the
scaled inverse participation ratio for the states closer to the
band edge indicates strong localization at E around E.. On
the other hand, at lower energies E=FEr+0.5 eV, a transition
from delocalized to localized states takes place depending on
the concentration of Mn impurities, see the inset of Fig. 10.
The linear increase of [N-I(Ex+0.5 eV,x,N)] with size N
indicates localized states for concentrations x<<0.15. On the
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FIG. 10. (Color online) Model B: Maximum value of the scaled
inverse participation ratio [N- I, (Epe,x,N)] for energies close to
the valence-band edge as a function of the system size N. The inset
shows the same quantity at energies Er+0.5 eV.

other hand, the scaled inverse participation ratio remains
constant for x=0.15 for all system sizes meaning that the
states are extended. Obviously, the concentration of Mn im-
purities is in this case large enough for the impurity states to
overlap. Generally one can assume that for each fixed energy
E there is a critical concentration x.(E) for which the slope
of [N-I(E,x,N)] vanishes. Based on this critical concentra-
tion, one can estimate the spatial extension of the Mn impu-
rity states. The average distance of impurities for given con-
centration x is approximately 0.4 nm-x~". For the critical
concentration x;(E) the impurity states start to overlap as
the transition from localization to delocalization takes place.
Therefore the spatial extension of the states at a fixed energy
can be estimated by 0.4 nm-x_}*(E). From Fig. 8 we find
XaiiEg+0.5 eV)=0.15 implying that the impurity states ex-
tend over a range of =0.7 nm. At higher energies, E,., ex-
trapolation of our data leads to x.;(E.)=0.18 and a spatial
extension of the impurity states of =0.6 nm. This estimate is
consistent with the experimentally deduced value.'?

In a second step we analyze the influence of the Mn con-
centration on the inverse participation ratio (5). Figures 11
and 12 show the results for a fixed system size N=432 for
models A (Masek) and B (Tang, Flatté), respectively. For
comparison, we have also included the result of a larger sys-
tem with a smaller concentration of Mn impurities. In the

4
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FIG. 11. (Color online) Model A: Scaled inverse participation
ratio [N-I(E,x,N)] for various concentrations x=0.009 (1024 at-
oms, 20k vectors, 5 disorder configurations), x=0.051, 0.102, and
0.148 (432 atoms, 89k vectors, 10 disorder configurations). The
arrows indicate the positions of the Fermi energy.
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FIG. 12. (Color online) Model B: Scaled inverse participation
ratio [N-1(E,x,N)] for various concentrations x=0.009 (1024 at-
oms, 20k vectors, 5 disorder configurations), x=0.051, 0.102, and
0.148 (432 atoms, 89k vectors, 10 disorder configurations). The
arrows indicate the positions of the Fermi energy.

case of model A (Magek), the increase of [N-I(E,x,N)] with
increasing energy starts first for the highest concentration x
=0.15. The reason can be found in the density of states—the
larger x is, the stronger the valence band changes. However,
if one considers [N-I(Eg,x,N)] at the Fermi energy, which
also depends on x, the influence of the concentration is neg-
ligible, see Fig. 13, where 1/[N-I(Eg,x,N)] is plotted as a
function of x.

For model B (Tang, Flatté) the situation is different since
[N-I(Eg,x,N)] increases with decreasing concentration x, as
shown in Fig. 12, meaning that the number of occupied sites
increases with x. This suggests that the states around the
Fermi energy tend to the Mn sublattice. This interpretation is
supported by the fact that 1/[N-I(E;,x,N)] increases linearly
with the concentration x, see Fig. 13. As 1/[N-I(E;,x,N)] is
a measure for the relative number of atoms where the states
reside, one can conclude that for model B (Tang, Flatté) the
states tend to spread on the Mn sublattice and nearby sites.
As an independent check of this conclusion we further
looked at the probability of states with given energy to be
found on the Mn impurities. As a result (not presented here)
we found that this probability is indeed strongly increased
already at the Fermi energy. It increases to almost one at
even higher energies E,. close to the band edge.

A
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Z A model A, N = 432
~ |[* model B, N =1024
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% Foooe %
0
0 0.05 0.1 0.15

FIG. 13. (Color online) Models A and B: Scaled participation
ratio 1/[N-I(Eg,x,N)] at the Fermi energy as a function of the Mn
concentration x. System sizes of N=1024, 686, and 432 atoms are
shown for models A and B.
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FIG. 14. (Color online) Model A: Conductivity Re o(A,x) for
various concentrations x=0.009 (686 atoms, 89k vectors) and x
=0.051, 0.101, and 0.148 (432 atoms, 240k vectors). The results are
averaged over § different disorder configurations. The inset shows
the results for p-doped GaAs in the clean limit of the model with
the corresponding number of holes added. The dashed-dotted line is
a Lorentzian fit to the Drude peak at A=0 for the x=0.051 data.

V. CONDUCTIVITY

The optical conductivity is a directly measurable quantity
which is closely related to the absorption. As there have been
various experiments studying this quantity for GaMnAs we
analyze the conductivity obtainable from the two models A
(Masek) and B (Tang, Flatté) and compare our results with
the experimental findings. The starting point for our analysis
is the expression for the real part of the conductivity,

me*h &k

Re o(A) = VO e
CO’( ) mzA;f . (2773|< k pz| k >|
xSEL -EY -0, (6)

where f (i) labels the final (initial) states and p, is the z
component of the momentum operator. We restrict our con-
siderations to a linearly polarized field in z direction. As we
investigate the optical conductivity in the infrared regime,
the eigenstates must share the same wave vector k. The re-
sulting conductivity cannot be expected to be quantitatively
exact as tight-binding approaches are known to underesti-
mate the absorption.*>*3 Nevertheless, the order of magni-
tude of various related quantities, such as effective masses
and important qualitative conclusions, can be extracted.
Within the tight-binding approach the matrix element of the
momentum operator in Eq. (6) can be expressed in terms of
the Hamiltonian matrix, Eq. (3), and the distance between
the localized orbitals.** This approximation neglects the
spin-orbit coupling for the evaluation of the matrix element
itself but correlations of the density of states are treated cor-
rectly giving a reasonable result for the optical
conductivity.*

Figures 14 and 15 show the conductivity obtained from
models A (Masek) and B (Tang, Flatté), respectively. In ei-
ther case, the low-frequency values are of limited accuracy
as the system is of a finite size which implies a finite mini-
mal level spacing. The minimal cutoff energy difference is
set here as A;,~5 meV by using a broadened & function of
this width in Eq. (6).
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FIG. 15. (Color online) Model B: Conductivity Re o(A,x) for
various concentrations x=0.009 (686 atoms, 89k vectors) and x
=0.051, 0.101, and 0.148 (432 atoms, 240k vectors). The results are
averaged over 8 different disorder configurations. The inset shows
the results for p-doped GaAs in the clean limit of the model with
the corresponding number of holes added.

As there is a clear qualitative difference between the two
models, let us start our discussion with model A (Masek).
For this model we find a low-frequency Drude peak which
has also been observed in experiments.® For low concentra-
tions, x=<0.01, additional peaks at =0.15 and =0.33 eV can
be identified clearly. These additional peaks correspond to
inter-valence-band transitions which blueshift to higher en-
ergy differences and become wider as the number of impu-
rities increases. This is very similar to the experimental ob-
servations in p-doped GaAs.*® Eventually, for concentrations
x=0.05, these peaks are vanishing in the background of the
Drude peak centered at A=0. The width of this Drude peak
can be related to a scattering time 7. This width and the peak
height can be estimated by fitting a Lorentzian to the con-
ductivity curve for small A,® see Fig. 14. As this fitting pro-
cedure can only be performed with some uncertainty the re-
sulting scattering times should be considered as qualitative
estimates. For the concentrations studied they range from 7
~27 fs to 6 fs, see Table I. The saturation of the scattering
time at high concentration is due to the break down of the
independent scattering mechanism. The height of the peak
gives the dc conductivity, e.g., o, ~4000 Q' cm™ for x
=0.05, which is one order of magnitude larger than the ex-
perimentally observed values.®%!! Additionally the peak
height and width are related to an effective mass m*. The

TABLE I. Estimates for the dimensionless scattering length kgl.
The values for (kpl)* are based on a Lorentzian fit while (kgl) o Was
obtained by direct integration of the numerical data. The (kgl) val-
ues for model B indicate that for the given range of parameters, the
Drude-Boltzmann theory is not unambiguously applicable. We have
nevertheless included the values for comparison with experimental
data.

Mn concentration x 0.01 0.05 0.1 0.15
Model A: 7 fs] 27 7 6 6

Model A: (kgl)* 10 14 14 14
Model A: (kFl)Opl 6 17 18 14
Model B: (kFl)Opl 2.5 2.8
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TABLE II. Estimates for the effective masses based on the sum
rule [Eq. (7)]. The values for m*/m, have been obtained by the
Lorentzian fit to the Drude peak obtained for model A (Mas$ek). The
masses m,/m, were calculated by integrating the numerical data
directly.

Mn concentration x 0.01 0.05 0.1 0.15
Model A: m*/m, 1.0 0.5 0.9 1.0
Model A: mgy/m, 0.5 0.4 0.5 0.5
Model B: myy/m, 0.4 0.6 0.7 0.9

estimation of this effective mass is based on a sum rule for
the evaluation of the plasma frequency,

, 2 Amax nge?

w,= %J dARe 0,(A) = o (7)
with n, being the carrier density and A, the cutoff energy.
When Eq. (7) is applied to the Lorentzian fit of the Drude
peak, the cutoff energy can be set to infinity. This procedure
of fitting a Lorentzian and applying the sum rule leads to
effective masses m*/m,=~0.9, see Table II. Based on the es-
timates for the scattering times and these effective masses we
conclude that (kpl)* = 10-14, see Table I, for x=0.01-0.15
which means that the assumption of weak scattering is appli-
cable. However, the compensation of some of the Mn accep-
tors due to interstitials lowers the effective hole density and
thus also decreases the values for (kgl)* accordingly. The
estimates based on experimental measurements lie between
kpl=0.75 (Refs. 11 and 47) and kpl=1-5 (Refs. 8 and 14).
Finally, we give an estimate of the mobility u
~13 cm?/Vs for x=0.1 which is by a factor 3-5 larger than
the experimental values.>!!

A different approach based on the sum rule is to apply Eq.
(7) directly to the numerical data and choose a cutoff that
includes all interband transitions but excludes valence band
to conduction-band transitions,*® ie., A, ,,=1.5 eV. This
means that not only the narrow peak at A=0 is considered
but the wider overall shape of o(A) which decays on an
energy scale ~0.15 eV. This defines an optical mass my
which, for model A (Masek), remains approximately con-
stant, i.e., mopt/me~0.5, for x=0.01-0.15, see Table II. This
is to be compared with a stronger increase in the magnitude
of the optical masses mgy/m,=0.6—1.2 which we obtain by
the same method for p-doped GaAs with the corresponding
number of holes added. This discrepancy is not only in the
magnitude but also in the rate of the increase in mey/m,,
with respect to the concentration x, indicates that the band
structure of the host valence band is altered due to the dis-
order.

In strong contrast to model A (Masek), there is no low-
frequency Drude peak for model B (Tang, Flatté). For low
concentrations x=0.009 the impurity band causes an absorp-
tion maximum around 0.1 eV. Its half-width of ~50 meV
reflects the width of the impurity band. For higher concen-
trations the impurity band completely merges with the host
valence band leading to a more or less constant optical ab-
sorption. This behavior is in qualitative agreement with the
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experimental observations in Refs. 9 and 11. At concentra-
tions x~0.1 a broad feature with a maximum at 0.5 eV
forms due to the larger number of impurity states which are
shifted into the host gap. The absolute values of the conduc-
tivity lie between 100 and 900 Q! cm™! for the various con-
centrations which is in good agreement with the
measurements.>%!! Applying the sum rule [Eq. (7)] with
AL.x=1.5 eV which defines the optical mass we find
M/ m,=~0.4 for x=0.009 increasing to mey/m,~0.9 for x
=0.148, see Table II. The corresponding values of p-doped
GaAs range from my,/m, =~ 0.6 to mqy/m,~1.2. As we have
described in Sec. IV, model B (Tang, Flatté) is close to a
metal-insulator transition for the impurity concentrations
considered. This is reflected by the very broad peak implying
very short scattering times which are inconsistent with the
weak scattering limit. For the larger concentrations x=0.1
we estimate the half-width of the broad maximum of
Re o(A) to be ~0.5 eV, implying 7~ 1 fs. From this fol-
lows that u~3 cm?/Vs and kpl~2.5 so that the mean-free
path is on the order of the wavelength of the carriers. Hence
the Ioffe-Regel limit is reached and a Drude-Boltzmann de-
scription of the conductivity cannot be expected to be a valid
approximation any more.

In Ref. 8 the reasoning for the existence of an impurity
band was based on the analysis of effective masses. How-
ever, the same analysis performed for our simulation data
does not give a useful tool to distinguish the case without an
impurity band from the one where an impurity band can still
be identified. Although the density of states and the localiza-
tion properties are very different for the two models A and B
we find rather similar values for the effective and optical
masses, see Table II.

VI. CONCLUSIONS

We have presented tight-binding studies of the electronic
and optical properties of Ga;_,Mn,As based on two different
parameterizations. The first parameterization due to Masek
(model A), is based on first-principles calculations. In this
model, the Mn impurity is described by a change in the on-
site and hopping terms as well as the additional inclusion of
the d orbitals. This approach leads to certain qualitative
changes in the electronic properties, i.e., the density of states.
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However, it does not give rise to the formation of an impu-
rity band. Instead, the inclusion of the disorder has a very
similar effect as the inclusion of an equally large amount of
holes without additional disorder. For the optical properties
that can be deduced from Masek’s model (A), we find the
formation of a Drude peak as a clear signature of the disor-
der. This is in agreement with recent experiments. The esti-
mations for the dimensionless scattering length (kp/) and the
mobility u give reasonable results while the absolute value
of the dc conductivity is significantly larger than those ob-
served in experiments. The interband transitions, that are also
identifiable for low concentrations x <<0.1, blueshift with in-
creasing amount of disorder which is in contradiction to the
experiments performed on GaMnAs.

The second parameter set, by Tang and Flatté (model B),
is based on a more phenomenological modeling of the Mn
impurities. It describes the bound level of a single Mn impu-
rity rather well and leads to a formation of an impurity band
in the density of states of Ga;_Mn,As for small x=0.01.
This impurity band merges with the host valence band at
concentrations x~0.01. The Fermi energy lies within this
impurity band and the states at the Fermi level are extended
for Mn concentrations between 5% and 15%. However, the
eigenstates become localized for higher energies closer to the
band edge. The optical conductivity is characterized by the
absence of a Drude peak at zero frequency and a rather fea-
tureless shape. It shows a broad maximum for larger Mn
concentrations with a half-width of approximately 0.5 eV.
From this width we deduce short scattering times leading to
the conclusion that a Drude-Boltzmann theory of weak scat-
tering is not applicable.

As the experiments on the electronic properties of GaM-
nAs are not entirely conclusive at the moment, it is difficult
to judge which model fits best for a given physical quantity.
Either model describes some of the experimental findings
correctly while it fails for others.
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